

3. Analytic Solution of Ordinary Differential Equations

Don't forget the `restart` command to clear the variables for the tutorial.

`restart` :

1. Analytically Solve a 2nd Order ODE

To solve an ODE, we follow a few steps

Step 1. Define the ODE

Let's solve the simple harmonic oscillator equation $\frac{d^2}{dt^2}x(t) = -\omega^2 x$. We create the derivatives as

expressions using the `diff()` command and write the ODE as follows (the double t's mean second derivative). We give the equation the name `ode`.

$$ode := \text{diff}(x(t), t, t) = -\omega^2 \cdot x(t)$$
$$\frac{d^2}{dt^2} x(t) = -\omega^2 x(t) \quad (1)$$

`x(t)` will be a function, so we need to specify `x(t)` in the `diff()` command and not just `x`.

Step 2. Solve the ODE

Now that we have defined the ODE, we solve it using the `dsolve()` command. The first argument is the name of the equation you want to solve (`ode` in this case) and the second argument is the variable you are solving for. Make sure to give the solution a name (I chose "`sol`").

$$sol := \text{dsolve}(ode, x(t));$$
$$x(t) = _C1 \sin(\omega t) + _C2 \cos(\omega t) \quad (2)$$

Because we didn't specify the initial conditions, Maple includes the constants of integration `_C1` and `_C2`.

To remove the integration constants, we can specify the initial conditions. For a second-order ODE, this means defining the initial position x_0 and the initial velocity v_0 . Notice that we use the `D()` command to take the time derivative of position since `x` is a function.

$$ic1 := x(0) = x0$$
$$x(0) = x0 \quad (3)$$

$$ic2 := D(x)(0) = v0$$
$$D(x)(0) = v0 \quad (4)$$

We can modify the `dsolve()` command to include the initial conditions. The name of the ODE is grouped

together with the initial conditions using square brackets.

sol := *dsolve*([*ode, ic1, ic2*], *x(t)*)

$$x(t) = \frac{v_0 \sin(\omega t)}{\omega} + x_0 \cos(\omega t) \quad (5)$$

Now our solution is in terms of the initial position x_0 . The result is an equation in the form $x(t) = (\text{an expression})$. If you want to work with the expression on the right hand side (rhs) of the equals sign use the command *xx* := *rhs*(*sol*).

To find the velocity as a function of time, we differentiate the solution using the *diff*() command

diff(*sol*, *t*)

$$\frac{d}{dt} x(t) = -\sin(\omega t) \omega x_0 + \cos(\omega t) v_0 \quad (6)$$

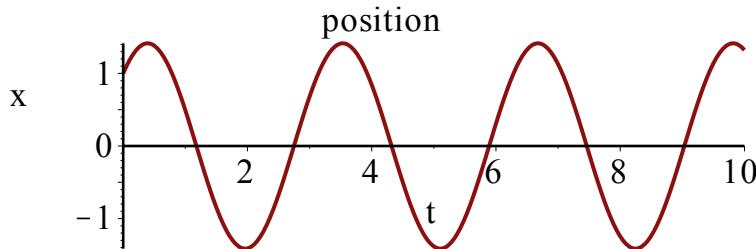
Step 3. Graph the solution

the right-hand-side of the solution *rhs*(*sol*) is an expression, we can use the *subs*() command to insert the values

$$SOL := \text{subs}(\omega = 2, x_0 = 1, v_0 = 2, \text{rhs}(sol)) \\ \sin(2t) + \cos(2t) \quad (7)$$

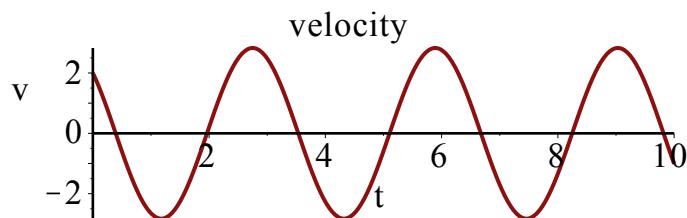
We now have the solution in a format that we can plot

plot(*SOL*, *t* = 0 .. 10, *labels* = ["*t*", "*x*"], *title* = "position")



To plot the velocity as a function of time try this:

plot(*diff*(*SOL*, *t*), *t* = 0 .. 10, *labels* = ["*t*", "*v*"], *title* = "velocity")



Just the Code

Here are the equations without the narrative. We use colons at the ends of most statements to suppress output.

restart:

$$ode := \text{diff}(x(t), t, t) = -\omega^2 \cdot x(t) :$$

$$ic1 := x(0) = x0 :$$

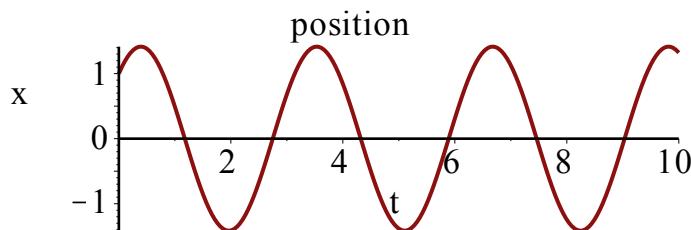
$$ic2 := D(x)(0) = v0 :$$

$$sol := \text{dsolve}([ode, ic1, ic2], x(t)) :$$

$$SOL := \text{subs}(\omega = 2, x0 = 1, v0 = 2, \text{rhs}(sol))$$

$$\sin(2t) + \cos(2t) \quad (8)$$

$$\text{plot}(SOL, t = 0 .. 10, \text{labels} = ["t", "x"], \text{title} = \text{"position"})$$



$$\text{plot}(\text{diff}(SOL, t), t = 0 .. 10, \text{labels} = ["t", "v"], \text{title} = \text{"velocity"})$$

