The Levi-Civita Symbol

Introduction

The Levi-Civita symbol (also called the permutation symbol or alternating tensor) is a mathematical object that provides a compact and elegant way to express vector operations, particularly the cross product. It is denoted by $\epsilon_{ijk}$ (or $\varepsilon_{ijk}$) and takes values of $+1$, $-1$, or $0$ depending on the permutation of its indices.

Definition of the Levi-Civita Symbol:

The Levi-Civita symbol $\epsilon_{ijk}$ in three dimensions is defined as:

$$\epsilon_{ijk} = \begin{cases} +1 & \text{if } (i,j,k) \text{ is an even permutation of } (1,2,3) \\ -1 & \text{if } (i,j,k) \text{ is an odd permutation of } (1,2,3) \\ 0 & \text{if any two indices are equal} \end{cases}$$

where $i$, $j$, and $k$ each take values from the set $\{1, 2, 3\}$ (corresponding to $x$, $y$, $z$ in Cartesian coordinates).

Understanding Permutations

To understand the Levi-Civita symbol, we need to understand what even and odd permutations mean:

Values of the Levi-Civita Symbol

Here are all the values of $\epsilon_{ijk}$ for $i, j, k \in \{1, 2, 3\}$:

Complete Table of Values:
$(i,j,k)$ Permutation Type $\epsilon_{ijk}$
$(1,2,3)$ Even (identity) $+1$
$(2,3,1)$ Even (cyclic) $+1$
$(3,1,2)$ Even (cyclic) $+1$
$(2,1,3)$ Odd (swap 1↔2) $-1$
$(3,2,1)$ Odd (swap 1↔3) $-1$
$(1,3,2)$ Odd (swap 2↔3) $-1$
$(1,1,2)$, $(1,2,1)$, $(2,1,1)$, etc. Repeated indices $0$

Key Properties

Properties of the Levi-Civita Symbol:
  • Anti-symmetric: Swapping any two indices changes the sign: $$\epsilon_{ijk} = -\epsilon_{jik} = -\epsilon_{ikj} = -\epsilon_{kji}$$
  • Cyclic property: $\epsilon_{ijk} = \epsilon_{jki} = \epsilon_{kij}$ (even permutations of indices)
  • Zero for repeated indices: If any two indices are equal, $\epsilon_{ijk} = 0$
  • Summation identity: The product of two Levi-Civita symbols satisfies: $$\sum_{k=1}^3 \epsilon_{ijk}\epsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$$ where $\delta_{ij}$ is the Kronecker delta.

Using the Levi-Civita Symbol for Cross Products

The Levi-Civita symbol provides a compact way to express the cross product. For two vectors $\mathbf{a} = (a_1, a_2, a_3)$ and $\mathbf{b} = (b_1, b_2, b_3)$, the $i$-th component of their cross product is:

Cross Product Using Levi-Civita Symbol:
$$(\mathbf{a} \times \mathbf{b})_i = \sum_{j=1}^3 \sum_{k=1}^3 \epsilon_{ijk} a_j b_k$$

This formula gives the $i$-th component of the cross product. Using Einstein summation convention (where repeated indices are summed over), this can be written more compactly as:

$$(\mathbf{a} \times \mathbf{b})_i = \epsilon_{ijk} a_j b_k$$

where the repeated indices $j$ and $k$ are automatically summed over from 1 to 3.

Expanding the Summation

Let's see how the summation works. For the $x$-component ($i=1$), we have:

$$(\mathbf{a} \times \mathbf{b})_1 = \sum_{j=1}^3 \sum_{k=1}^3 \epsilon_{1jk} a_j b_k$$

Since $\epsilon_{1jk} = 0$ unless $(j,k)$ is $(2,3)$ or $(3,2)$, and:

we get:

$$(\mathbf{a} \times \mathbf{b})_1 = \epsilon_{123} a_2 b_3 + \epsilon_{132} a_3 b_2 = (+1) a_2 b_3 + (-1) a_3 b_2 = a_2 b_3 - a_3 b_2$$

Similarly, for the $y$-component ($i=2$):

$$(\mathbf{a} \times \mathbf{b})_2 = \epsilon_{231} a_3 b_1 + \epsilon_{213} a_1 b_3 = (+1) a_3 b_1 + (-1) a_1 b_3 = a_3 b_1 - a_1 b_3$$

And for the $z$-component ($i=3$):

$$(\mathbf{a} \times \mathbf{b})_3 = \epsilon_{312} a_1 b_2 + \epsilon_{321} a_2 b_1 = (+1) a_1 b_2 + (-1) a_2 b_1 = a_1 b_2 - a_2 b_1$$

This matches the standard component form of the cross product!

Examples

Example 1: Calculating a Cross Product Component

Calculate the $x$-component of $\mathbf{a} \times \mathbf{b}$ where $\mathbf{a} = (3, 4, 0)$ and $\mathbf{b} = (2, -1, 5)$ using the Levi-Civita symbol.

Solution:

Using the formula $(\mathbf{a} \times \mathbf{b})_1 = \epsilon_{1jk} a_j b_k$:

$$(\mathbf{a} \times \mathbf{b})_1 = \sum_{j=1}^3 \sum_{k=1}^3 \epsilon_{1jk} a_j b_k$$

Only terms with $\epsilon_{123}$ and $\epsilon_{132}$ are non-zero:

$$(\mathbf{a} \times \mathbf{b})_1 = \epsilon_{123} a_2 b_3 + \epsilon_{132} a_3 b_2$$
$$(\mathbf{a} \times \mathbf{b})_1 = (+1)(4)(5) + (-1)(0)(-1) = 20 + 0 = 20$$

This matches the $x$-component from the standard cross product formula.

Example 2: Complete Cross Product Calculation

Calculate $\mathbf{a} \times \mathbf{b}$ where $\mathbf{a} = (1, 2, 3)$ and $\mathbf{b} = (4, 5, 6)$ using the Levi-Civita symbol.

Solution:

For each component $i = 1, 2, 3$:

$x$-component ($i=1$):

$$(\mathbf{a} \times \mathbf{b})_1 = \epsilon_{123} a_2 b_3 + \epsilon_{132} a_3 b_2 = (1)(2)(6) + (-1)(3)(5) = 12 - 15 = -3$$

$y$-component ($i=2$):

$$(\mathbf{a} \times \mathbf{b})_2 = \epsilon_{231} a_3 b_1 + \epsilon_{213} a_1 b_3 = (1)(3)(4) + (-1)(1)(6) = 12 - 6 = 6$$

$z$-component ($i=3$):

$$(\mathbf{a} \times \mathbf{b})_3 = \epsilon_{312} a_1 b_2 + \epsilon_{321} a_2 b_1 = (1)(1)(5) + (-1)(2)(4) = 5 - 8 = -3$$

Therefore, $\mathbf{a} \times \mathbf{b} = (-3, 6, -3)$.

Example 3: Verifying Anti-commutativity

Show that the Levi-Civita formula gives $\mathbf{b} \times \mathbf{a} = -\mathbf{a} \times \mathbf{b}$.

Solution:

For $\mathbf{b} \times \mathbf{a}$, we have:

$$(\mathbf{b} \times \mathbf{a})_i = \epsilon_{ijk} b_j a_k$$

Using the anti-symmetry property $\epsilon_{ijk} = -\epsilon_{ikj}$:

$$(\mathbf{b} \times \mathbf{a})_i = \epsilon_{ijk} b_j a_k = -\epsilon_{ikj} b_j a_k$$

Relabeling indices ($j \leftrightarrow k$):

$$(\mathbf{b} \times \mathbf{a})_i = -\epsilon_{ijk} b_k a_j = -\epsilon_{ijk} a_j b_k = -(\mathbf{a} \times \mathbf{b})_i$$

This confirms the anti-commutative property of the cross product.

Example 4: Cross Product with Unit Vectors

Use the Levi-Civita symbol to show that $\hat{x} \times \hat{y} = \hat{z}$.

Solution:

With $\hat{x} = (1, 0, 0)$ and $\hat{y} = (0, 1, 0)$, we compute the $z$-component:

$$(\hat{x} \times \hat{y})_3 = \epsilon_{3jk} (\hat{x})_j (\hat{y})_k$$

The only non-zero term is when $j=1$ and $k=2$:

$$(\hat{x} \times \hat{y})_3 = \epsilon_{312} (1)(1) = (+1)(1) = 1$$

The $x$ and $y$ components are zero (you can verify this), so $\hat{x} \times \hat{y} = (0, 0, 1) = \hat{z}$.

Advantages of the Levi-Civita Notation

Why Use the Levi-Civita Symbol?
  • Compact notation: The formula $(\mathbf{a} \times \mathbf{b})_i = \epsilon_{ijk} a_j b_k$ is much more compact than writing out all components explicitly.
  • Generalization: The same notation works in any number of dimensions (though the cross product is only defined in 3D and 7D).
  • Proofs and identities: Many vector identities are easier to prove using the Levi-Civita symbol.
  • Connection to tensors: The Levi-Civita symbol is a fundamental object in tensor calculus and differential geometry.
  • Computer algebra: Many symbolic computation systems use this notation internally.

Connection to Determinants

The cross product can also be written as a determinant, which is closely related to the Levi-Civita symbol:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

The determinant expansion gives the same result as the Levi-Civita formula, since the determinant is essentially a sum over permutations, which is exactly what the Levi-Civita symbol encodes.