Integration Techniques

This page reviews some common techniques for evaluating integrals that are useful in physics.

Basic Integrals

Before discussing integration techniques, it's useful to recall some basic integrals:

Basic Integral Formulas
\begin{aligned} \int x^n \, dx &= \frac{x^{n+1}}{n+1} + C \quad (n \neq -1) \\ \int \frac{1}{x} \, dx &= \ln|x| + C \\ \int e^x \, dx &= e^x + C \\ \int \sin(x) \, dx &= -\cos(x) + C \\ \int \cos(x) \, dx &= \sin(x) + C \\ \int \sec^2(x) \, dx &= \tan(x) + C \end{aligned}

Substitution (u-Substitution)

Substitution is the integration counterpart to the chain rule in differentiation. It allows us to simplify integrals by making a change of variables. The idea is to identify a part of the integrand whose derivative also appears in the integrand.

Substitution Method

If we can write an integral in the form $\int f(g(x))g'(x) \, dx$, then we can make the substitution $u = g(x)$ to obtain:

$$\int f(g(x))g'(x) \, dx = \int f(u) \, du$$

After integrating with respect to $u$, we substitute back $u = g(x)$.

Example: Evaluate $\int 2x(x^2 + 1)^3 \, dx$

Notice that the derivative of $x^2 + 1$ is $2x$, which appears in the integrand. Let $u = x^2 + 1$, so that $du = 2x \, dx$:

\begin{aligned} \int 2x(x^2 + 1)^3 \, dx &= \int u^3 \, du \\ &= \frac{u^4}{4} + C \\ &= \frac{(x^2 + 1)^4}{4} + C \end{aligned}
Example: Evaluate $\int x e^{x^2} \, dx$

Notice that the derivative of $x^2$ is $2x$. Let $u = x^2$, so that $du = 2x \, dx$, or $x \, dx = \frac{du}{2}$:

\begin{aligned} \int x e^{x^2} \, dx &= \int e^u \cdot \frac{du}{2} \\ &= \frac{1}{2} \int e^u \, du \\ &= \frac{1}{2} e^u + C \\ &= \frac{1}{2} e^{x^2} + C \end{aligned}
Example: Evaluate $\int \frac{x}{\sqrt{1 - x^2}} \, dx$

Let $u = 1 - x^2$, so that $du = -2x \, dx$, or $x \, dx = -\frac{du}{2}$:

\begin{aligned} \int \frac{x}{\sqrt{1 - x^2}} \, dx &= \int \frac{1}{\sqrt{u}} \cdot \left(-\frac{du}{2}\right) \\ &= -\frac{1}{2} \int u^{-1/2} \, du \\ &= -\frac{1}{2} \cdot 2u^{1/2} + C \\ &= -\sqrt{u} + C \\ &= -\sqrt{1 - x^2} + C \end{aligned}

Integration by Parts

Integration by parts is the integration counterpart to the product rule in differentiation. It's particularly useful when the integrand is a product of two functions where one function becomes simpler when differentiated and the other becomes manageable when integrated.

Integration by Parts
$$\int u \, dv = uv - \int v \, du$$

where $u$ and $v$ are functions of the integration variable. The choice of $u$ and $dv$ is crucial for success. A common mnemonic is LIATE (Logarithmic, Inverse trigonometric, Algebraic, Trigonometric, Exponential) to help choose $u$: the function that is earlier in this list should be chosen for $u$ while $v$ should be the function that is later.

Example: Evaluate $\int x e^x \, dx$

Let $u = x$ and $dv = e^x \, dx$. Then $du = dx$ and $v = e^x$:

\begin{aligned} \int x e^x \, dx &= xe^x - \int e^x \, dx \\ &= xe^x - e^x + C \\ &= e^x(x - 1) + C \end{aligned}
Example: Evaluate $\int x \sin(x) \, dx$

Let $u = x$ and $dv = \sin(x) \, dx$. Then $du = dx$ and $v = -\cos(x)$:

\begin{aligned} \int x \sin(x) \, dx &= x(-\cos(x)) - \int (-\cos(x)) \, dx \\ &= -x\cos(x) + \int \cos(x) \, dx \\ &= -x\cos(x) + \sin(x) + C \end{aligned}
Example: Evaluate $\int \ln(x) \, dx$

This requires a clever choice: let $u = \ln(x)$ and $dv = dx$. Then $du = \frac{1}{x} \, dx$ and $v = x$:

\begin{aligned} \int \ln(x) \, dx &= x\ln(x) - \int x \cdot \frac{1}{x} \, dx \\ &= x\ln(x) - \int 1 \, dx \\ &= x\ln(x) - x + C \\ &= x(\ln(x) - 1) + C \end{aligned}

Trigonometric Substitution

Trigonometric substitution is useful for integrals involving expressions like $\sqrt{a^2 - x^2}$, $\sqrt{x^2 - a^2}$, or $\sqrt{x^2 + a^2}$. The key is to use trigonometric identities to simplify the square root.

Common Trigonometric Substitutions
  • For $\sqrt{a^2 - x^2}$: use $x = a\sin(\theta)$
  • For $\sqrt{a^2 + x^2}$: use $x = a\tan(\theta)$
  • For $\sqrt{x^2 - a^2}$: use $x = a\sec(\theta)$
Example: Evaluate $\int \frac{1}{\sqrt{1 - x^2}} \, dx$

Let $x = \sin(\theta)$, so that $dx = \cos(\theta) \, d\theta$. Then $\sqrt{1 - x^2} = \sqrt{1 - \sin^2(\theta)} = \cos(\theta)$:

\begin{aligned} \int \frac{1}{\sqrt{1 - x^2}} \, dx &= \int \frac{1}{\cos(\theta)} \cdot \cos(\theta) \, d\theta \\ &= \int 1 \, d\theta \\ &= \theta + C \\ &= \arcsin(x) + C \end{aligned}
Example: Evaluate $\int \frac{1}{x^2 + 1} \, dx$

Let $x = \tan(\theta)$, so that $dx = \sec^2(\theta) \, d\theta$:

\begin{aligned} \int \frac{1}{x^2 + 1} \, dx &= \int \frac{1}{\tan^2(\theta) + 1} \cdot \sec^2(\theta) \, d\theta \\ &= \int \frac{1}{\sec^2(\theta)} \cdot \sec^2(\theta) \, d\theta \\ &= \int 1 \, d\theta \\ &= \theta + C \\ &= \arctan(x) + C \end{aligned}

Partial Fractions

Partial fractions is a technique for integrating rational functions (ratios of polynomials). The idea is to decompose a complex rational function into simpler fractions that can be integrated individually.

Partial Fraction Decomposition

For a rational function $\frac{P(x)}{Q(x)}$ where the degree of $P(x)$ is less than the degree of $Q(x)$, we decompose it into a sum of simpler fractions. The form depends on the factorization of $Q(x)$:

  • For a linear factor $(ax + b)$: $\frac{A}{ax + b}$
  • For a repeated linear factor $(ax + b)^n$: $\frac{A_1}{ax + b} + \frac{A_2}{(ax + b)^2} + \cdots + \frac{A_n}{(ax + b)^n}$
  • For an irreducible quadratic factor $(ax^2 + bx + c)$: $\frac{Ax + B}{ax^2 + bx + c}$
Example: Evaluate $\int \frac{1}{x^2 - 1} \, dx$

Factor the denominator: $x^2 - 1 = (x - 1)(x + 1)$. Decompose:

$$\frac{1}{x^2 - 1} = \frac{A}{x - 1} + \frac{B}{x + 1}$$

Multiply both sides by $(x - 1)(x + 1)$:

$$1 = A(x + 1) + B(x - 1)$$

Solving: $A = \frac{1}{2}$, $B = -\frac{1}{2}$. Therefore:

\begin{aligned} \int \frac{1}{x^2 - 1} \, dx &= \int \left(\frac{1/2}{x - 1} - \frac{1/2}{x + 1}\right) \, dx \\ &= \frac{1}{2}\ln|x - 1| - \frac{1}{2}\ln|x + 1| + C \\ &= \frac{1}{2}\ln\left|\frac{x - 1}{x + 1}\right| + C \end{aligned}

Combining Techniques

Many integrals require the application of multiple techniques. The key is to recognize which technique to apply first and work systematically through the problem.

Example: Evaluate $\int x^3 e^{x^2} \, dx$

First, use substitution: let $u = x^2$, so that $du = 2x \, dx$, or $x \, dx = \frac{du}{2}$. Notice that $x^3 = x^2 \cdot x$, so $x^3 \, dx = x^2 \cdot x \, dx = u \cdot \frac{du}{2}$:

\begin{aligned} \int x^3 e^{x^2} \, dx &= \int u e^u \cdot \frac{du}{2} \\ &= \frac{1}{2} \int u e^u \, du \end{aligned}

Now use integration by parts with $v = u$ and $dw = e^u \, du$, so $dv = du$ and $w = e^u$:

\begin{aligned} \frac{1}{2} \int u e^u \, du &= \frac{1}{2}\left(ue^u - \int e^u \, du\right) \\ &= \frac{1}{2}(ue^u - e^u) + C \\ &= \frac{1}{2}e^u(u - 1) + C \\ &= \frac{1}{2}e^{x^2}(x^2 - 1) + C \end{aligned}
Example: Evaluate $\int e^x \sin(x) \, dx$

Use integration by parts twice. Let $u = e^x$ and $dv = \sin(x) \, dx$, so $du = e^x \, dx$ and $v = -\cos(x)$:

\begin{aligned} \int e^x \sin(x) \, dx &= -e^x\cos(x) + \int e^x \cos(x) \, dx \end{aligned}

Apply integration by parts again to $\int e^x \cos(x) \, dx$ with $u = e^x$ and $dv = \cos(x) \, dx$, so $du = e^x \, dx$ and $v = \sin(x)$:

\begin{aligned} \int e^x \cos(x) \, dx &= e^x\sin(x) - \int e^x \sin(x) \, dx \end{aligned}

Substituting back:

\begin{aligned} \int e^x \sin(x) \, dx &= -e^x\cos(x) + e^x\sin(x) - \int e^x \sin(x) \, dx \\ 2\int e^x \sin(x) \, dx &= e^x(\sin(x) - \cos(x)) \\ \int e^x \sin(x) \, dx &= \frac{e^x(\sin(x) - \cos(x))}{2} + C \end{aligned}

Definite Integrals

When evaluating definite integrals using substitution or other techniques, we can either:

Example: Evaluate $\int_0^2 x\sqrt{x^2 + 1} \, dx$

Use substitution: let $u = x^2 + 1$, so that $du = 2x \, dx$, or $x \, dx = \frac{du}{2}$. When $x = 0$, $u = 1$; when $x = 2$, $u = 5$:

\begin{aligned} \int_0^2 x\sqrt{x^2 + 1} \, dx &= \int_1^5 \sqrt{u} \cdot \frac{du}{2} \\ &= \frac{1}{2} \int_1^5 u^{1/2} \, du \\ &= \frac{1}{2} \cdot \frac{2}{3} u^{3/2}\bigg|_1^5 \\ &= \frac{1}{3}(5^{3/2} - 1^{3/2}) \\ &= \frac{1}{3}(5\sqrt{5} - 1) \end{aligned}
Summary
  • Substitution: Use when you can identify $u = g(x)$ such that $g'(x)$ appears in the integrand: $\int f(g(x))g'(x) \, dx = \int f(u) \, du$
  • Integration by Parts: $\int u \, dv = uv - \int v \, du$; choose $u$ using LIATE (Logarithmic, Inverse trigonometric, Algebraic, Trigonometric, Exponential)
  • Trigonometric Substitution: Use for integrals involving $\sqrt{a^2 - x^2}$, $\sqrt{a^2 + x^2}$, or $\sqrt{x^2 - a^2}$
  • Partial Fractions: Decompose rational functions into simpler fractions that can be integrated individually
  • Many integrals require combining multiple techniques—start with the technique that simplifies the integral most
  • For definite integrals, either evaluate the indefinite integral first or change the limits with the substitution