Trigonometry

This page reviews basic trigonometric functions and identities.

Disclaimer: Always verify formulas from another source before using them.

Basic Trigonometric Functions

The six basic trigonometric functions are defined in terms of a right triangle or the unit circle. For an angle $\theta$ in a right triangle with opposite side $a$, adjacent side $b$, and hypotenuse $c$:

Right Triangle Definitions
\begin{aligned} \sin(\theta) &= \frac{\text{opposite}}{\text{hypotenuse}} = \frac{a}{c} \\ \cos(\theta) &= \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{b}{c} \\ \tan(\theta) &= \frac{\text{opposite}}{\text{adjacent}} = \frac{a}{b} = \frac{\sin(\theta)}{\cos(\theta)} \\ \csc(\theta) &= \frac{1}{\sin(\theta)} = \frac{c}{a} \\ \sec(\theta) &= \frac{1}{\cos(\theta)} = \frac{c}{b} \\ \cot(\theta) &= \frac{1}{\tan(\theta)} = \frac{b}{a} = \frac{\cos(\theta)}{\sin(\theta)} \end{aligned}

On the unit circle (circle of radius 1 centered at the origin), if a point on the circle makes an angle $\theta$ with the positive $x$-axis, then the coordinates of that point are $(\cos(\theta), \sin(\theta))$.

Fundamental Identities

Pythagorean Identities

Pythagorean Identities
\begin{aligned} \sin^2(\theta) + \cos^2(\theta) &= 1 \\ 1 + \tan^2(\theta) &= \sec^2(\theta) \\ 1 + \cot^2(\theta) &= \csc^2(\theta) \end{aligned}
Example: Verify $\sin^2(\theta) + \cos^2(\theta) = 1$

Using the right triangle definitions with hypotenuse $c$:

\begin{aligned} \sin^2(\theta) + \cos^2(\theta) &= \left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 \\ &= \frac{a^2 + b^2}{c^2} \\ &= \frac{c^2}{c^2} = 1 \end{aligned}

where the last step uses the Pythagorean theorem: $a^2 + b^2 = c^2$.

Angle Sum and Difference Identities

Angle Sum Identities
\begin{aligned} \sin(\alpha \pm \beta) &= \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta) \\ \cos(\alpha \pm \beta) &= \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta) \\ \tan(\alpha \pm \beta) &= \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)} \end{aligned}

Double Angle Identities

Double Angle Identities
\begin{aligned} \sin(2\theta) &= 2\sin(\theta)\cos(\theta) \\ \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta) \\ &= 2\cos^2(\theta) - 1 \\ &= 1 - 2\sin^2(\theta) \\ \tan(2\theta) &= \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \end{aligned}

Half Angle Identities

Half Angle Identities
\begin{aligned} \sin^2\left(\frac{\theta}{2}\right) &= \frac{1 - \cos(\theta)}{2} \\ \cos^2\left(\frac{\theta}{2}\right) &= \frac{1 + \cos(\theta)}{2} \\ \tan\left(\frac{\theta}{2}\right) &= \frac{\sin(\theta)}{1 + \cos(\theta)} = \frac{1 - \cos(\theta)}{\sin(\theta)} \end{aligned}

Product-to-Sum and Sum-to-Product Identities

Product-to-Sum Identities
\begin{aligned} \sin(\alpha)\sin(\beta) &= \frac{1}{2}[\cos(\alpha - \beta) - \cos(\alpha + \beta)] \\ \cos(\alpha)\cos(\beta) &= \frac{1}{2}[\cos(\alpha - \beta) + \cos(\alpha + \beta)] \\ \sin(\alpha)\cos(\beta) &= \frac{1}{2}[\sin(\alpha + \beta) + \sin(\alpha - \beta)] \\ \cos(\alpha)\sin(\beta) &= \frac{1}{2}[\sin(\alpha + \beta) - \sin(\alpha - \beta)] \end{aligned}
Sum-to-Product Identities
\begin{aligned} \sin(\alpha) + \sin(\beta) &= 2\sin\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right) \\ \sin(\alpha) - \sin(\beta) &= 2\cos\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right) \\ \cos(\alpha) + \cos(\beta) &= 2\cos\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right) \\ \cos(\alpha) - \cos(\beta) &= -2\sin\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right) \end{aligned}

Special Angles

The values of trigonometric functions at special angles are frequently used in physics problems:

Angle $\sin$ $\cos$ $\tan$
$0$ $0$ $1$ $0$
$\pi/6$ ($30°$) $1/2$ $\sqrt{3}/2$ $1/\sqrt{3}$
$\pi/4$ ($45°$) $\sqrt{2}/2$ $\sqrt{2}/2$ $1$
$\pi/3$ ($60°$) $\sqrt{3}/2$ $1/2$ $\sqrt{3}$
$\pi/2$ ($90°$) $1$ $0$ $\infty$
$\pi$ ($180°$) $0$ $-1$ $0$

Even and Odd Properties

Parity of Trigonometric Functions
\begin{aligned} \sin(-\theta) &= -\sin(\theta) \quad \text{(odd function)} \\ \cos(-\theta) &= \cos(\theta) \quad \text{(even function)} \\ \tan(-\theta) &= -\tan(\theta) \quad \text{(odd function)} \end{aligned}

Periodicity

Periodic Properties
\begin{aligned} \sin(\theta + 2\pi n) &= \sin(\theta), \quad n \in \mathbb{Z} \\ \cos(\theta + 2\pi n) &= \cos(\theta), \quad n \in \mathbb{Z} \\ \tan(\theta + \pi n) &= \tan(\theta), \quad n \in \mathbb{Z} \end{aligned}

The sine and cosine functions have period $2\pi$, while the tangent function has period $\pi$.

Inverse Trigonometric Functions

The inverse trigonometric functions are defined with restricted domains to ensure they are functions:

Inverse Trigonometric Functions
\begin{aligned} \arcsin(x) &: [-1, 1] \to [-\pi/2, \pi/2] \\ \arccos(x) &: [-1, 1] \to [0, \pi] \\ \arctan(x) &: (-\infty, \infty) \to (-\pi/2, \pi/2) \end{aligned}

These satisfy: $\sin(\arcsin(x)) = x$ for $x \in [-1, 1]$, $\cos(\arccos(x)) = x$ for $x \in [-1, 1]$, and $\tan(\arctan(x)) = x$ for all $x$.

Example: Small Angle Approximations

For small angles $\theta$ (in radians), the following approximations are frequently used in physics:

\begin{aligned} \sin(\theta) &\approx \theta \\ \cos(\theta) &\approx 1 - \frac{\theta^2}{2} \\ \tan(\theta) &\approx \theta \end{aligned}

These approximations are valid when $|\theta| \ll 1$ (in radians). They are derived from the Taylor series expansions and are essential for analyzing small oscillations, pendulums, and other systems near equilibrium.